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Introduction 
 The term  “molecular imaging” is reasonably new. It refers in the broadest sense to the 
concept of spatially mapping (imaging) the presence of specific molecules, which are presumably 
of interest in some critical physiologic, biochemical, or disease process [1] [2]. There are a vast 
number of methods currently under development that easily fit this definition, each with its own 
advantages and disadvantages. The limited time permitted for this presentation precludes an 
exhaustive study of each. This presentation will focus on four active modalities: optical imaging, 
nuclear imaging (PET and SPECT), x ray (conventional radiography and CT),  and magnetic 
resonance imaging (MRI). We will describe the fundamental process that provides image signal 
for each modality and discuss the impact of this signal on sensitivity, contrast, and spatial 
resolution. We will draw comparisons between the modalities with specific focus on preclinical 
methods (small animals). We will give specific examples in which the use of new agents has 
allowed significant increase in the sensitivity, spatial resolution, or both.   
 
 Figure 1 shows the electromagnetic spectrum spanning wavelengths covering14 orders of 
magnitude from 106microns (radio waves) to 10-8microns (gamma rays). The imaging modalities 
under discussion span this entire range. Magnetic resonance operates at wavelengths in the 
radiofrequency part of the spectrum. Optical imaging exploits the near infrared and visible part of 
the spectrum. X ray imaging is performed at wavelengths <10-2 microns. And nuclear imaging is 
done at wavelengths of ~10-6 microns. 

 

Figure 1. All of the molecular 
imaging methods employ some 
sort of electromagnetic radiation. 
The four methods under 
discussion span the entire 
spectrum 

SPECT Imaging 
 One could readily argue that nuclear imaging is the most highly developed of the 
molecular imaging methods, particularly when one takes a narrow view of “molecular imaging”. 
Nuclear techniques are direct imaging methods where the signal source is the molecule of 



interest. The origin of the signal is the decay of an unstable nucleus. The two most common 
methods of tomographic nuclear imaging are single photon emission computed tomography 
(SPECT) and positron emission tomography (PET). As the name implies, SPECT exploits single 
gamma rays from decaying nuclei. There are a number of potential nuclei for SPECT imaging. 
Table 1 lists a few of the more common ones: 

Isotope Half Life Energy(keV) 
 67Ga 78 hrs 93,184,296,388 
99mTc 6 hr 140 kev 
111mIn 2.8 days 23,26,173 247 
123I 13 hr 159 
201Tl 3 days 80,135,167 

         Table 1 Common SPECT Isotopes 
 
    

The majority of the nuclides yield gamma rays at energies > 100 keV, so the radiation 
exits the patient with only limited attenuation. Since the nuclear detectors are able to count 
individual gamma rays, nuclear imaging methods are extremely sensitive.   Concentrations in the 
nano or even pico mole can be detected. Thus these are truly trace probes, which have little effect 
on the local biochemistry. 

The spatial resolution is determined by a combination of factors. The collimator is one of 
the most important. More closely spaced septa or collimators with higher aspect ratios define the 
solid angle of the radiation better thereby improving the spatial resolution. The energy of the 
gamma rays also influences the spatial resolution since the higher energy gamma rays can 
penetrate the septa. As with most imaging systems, there is a trade off between the sensitivity and 
spatial resolution. As the collimators define narrower acceptance angles, the amount of radiation 
reaching the scintillator is reduced. The spatial resolution can be very high for pinhole collimators 
in small animal systems (< 1x 1 x 1 mm) [3].  
 
PET Imaging 
 Positron emission tomography is a direct imaging method like SPECT that also detects 
gamma rays. But the source of the gamma rays is the pair production that accompanies positron 
decay. An unstable nucleus decays by conversion of a proton to a neutron with the simultaneous 
expulsion of a positron and a neutrino. The positron travels some distance until it encounters an 
electron. Since the positron and electron are antimatter/matter, they annihilate each other. As they 
do, they emit two gamma rays, each at 511 keV. The gamma rays are emitted in exactly opposite 
directions. Table 2 lists some of the most common PET emitters. 
 
 
Isotope Half Life β+Energy(MeV) β+ Range 
11C 20 min 1 medium 
15N 10 min 1.2 medium 
15O 124 sec 1.7 long 
18F 1.8 hrs 0.6 short 
 64Cu 12.7 hrs 0.7 short 
Table 2 Common PET radionuclides 
 
 
 



Like SPECT, PET imaging is remarkably sensitive detecting very low probe 
concentrations (nanomole). Note however the much shorter half life of most PET emitters. This 
imposes challenges in synthesizing and delivery of specialized probes. While spatial resolution is 
again dependent on many physical parameters of the scanner, the fundamental resolution limit is 
imposed by the uncertainty about how far the positron has traveled before it encounters the 
electron. Not surprisingly then, emitters with more energetic positrons result in lower resolution 
images. The fundamental resolution limit for most small animal PET systems is ~ 1.5 mm. 
 
 
X Ray Imaging 

Some might argue that there are really very limited opportunities for radiographic 
“molecular” imaging. But if one chooses a broad definition of the term “molecular imaging” one 
can readily conclude that this is one of the more exciting methods particularly with the relatively 
recent development of microCT [4, 5]. MicroCT is an indirect method in which the molecular 
probe is not the source of the electromagnetic signal. The probe exerts its effect through a 
secondary modulation of the incident  (xray) electromagnetic radiation. The use of iodinated 
contrast agents has been common in clinical practice for many years. The more recent 
introduction of specialized iodinated probes as blood pool agents presents some very interesting 
possibilities. The spatial resolution for (small animal) radiographic methods is 2-3 orders of 
magnitude better than the  best nuclear imaging methods. Badea et al have recently reported in 
vivo microCT with isotropic spatial resolution of 100 microns using a new class of molecular 
probes with extremely high concentrations of iodine [6]. But the high spatial resolution comes at 
a price. The sensitivity of the microCT is abysmal. The sensitivity is determined by a number of 
competing issues factors- energy of the radiation, size of the specimen, and most importantly the 
total radiation flux [7]. In Badea’s work, the 100 micron resolution was achieved with ~ 10-2 

molar concentrations of iodine at a  total dose of ~ 0.15 Gy.  
 
 
Optical Imaging 

Optical imaging is another direct imaging method, i.e. a method where the molecule of 
interest is the source of radiation. There are a host of clever optical methods that have been 
developed by microscopists and molecular biologists over the years. One of the most popular 
methods is bioluminescence [8]. Bioluminescent imaging relies on the presence of an enzyme 
such as luciferase- the molecule responsible for light from the firefly. If the substrate for 
luciferase (luciferin) is present, the luciferase catalyzes the formation of oxyluciferin and light. 
 

 
 
The luciferase gene is used as a reporter gene for the gene of interest. Those cells expressing the 
gene of interest will also express the marker gene. When the substrate is supplied, those cells will 
give off the characteristic bioluminescence. 
 



Like PET and SPECT, bioluminescent imaging is very sensititve with detection limits in 
the nanomole. Bioluminescent imaging has intrinsically very high spatial resolution. Using 
conventional optical microscopes one can achieve micron levels of resolution. Optical methods 
do not suffer from the dose limitations of nuclear or radiographic methods since the energy of the 
optical photons is not sufficient to produce the biological damage done by ionizing radiation. 
Unfortunately this same attribute (low energy photons) poses one of the major drawbacks of 
optical methods. Most tissue is relatively opaque to optical radiation so the depth to which one 
can effectively image is very limited. In addition, optical radiation is scattered heavily by most 
tissues. Thus most of the molecular imaging done to date has been limited to small animal 
models. Extension to the clinical domain will require particularly clever approaches that are not 
entirely apparent at the moment.  

 
Magnetic Resonance Imaging 
 The majority of the molecular imaging studies in MRI have employed indirect methods 
where the molecular probe of interest exerts its influence on the signal from the water protons in 
some secondary fashion. One of the most successful techniques has been the use of paramagnetic 
contrast agents. These agents contain a source of unpaired electrons which couple strongly to the 
water protons. The presence of these paramagnetic agents results in enhanced proton signal. But 
the sensitivity is again, nowhere near that of optical or nuclear methods. Contrast agents at 
concentrations of 10-4molar are frequently necessary for major signal enhancement. The use of a 
wide range of paramegentic agents is now routine in the clinical arena. But some would argue 
that this is more physiologic imaging than true “molecular” imaging. 
 Recent work has resulted in direct imaging methods for MRI where the molecule of 
interest is the source of the signal. Hyperpolarized 129Xe imaging was first proposed in 1994 [9]. 
The method was extended to 3He in small animals in 1995 [10] and shortly thereafter to humans. 
Through the use of optical pumping methods, the signal in the He and Xe atoms can be enhanced 
some 100-1000 X over that of the natural (unpolarized) substance. The enhanced sensitivity can 
be used for higher spatial resolution with resolution now on the order of 100 microns for small 
animal models [11]. 
 
Summary 
 Comparison of imaging methods that are based on wavelengths that span 14 orders of 
magnitude, exploiting such a wide range of physical interactions, employing radically different 
methods of detection will inevitably end up comparing some apples to oranges. The table below 
is an attempt to make some comparisons of the relative sensitivity and spatial resolution for the 
four methods under comparison for the limited application of small animal imaging.  
 
Method Sensitivity Spatial Resolution Expense 
PET ++++ + ++ 
SPECT ++++ ++ +++ 
MicroCT + ++++ +++ 
Optical +++ ++ ++++ 
MRI ++ +++ + 
 

PET and SPECT are the most sensitive methods. MicroCT is one of the least sensitive 
methods but the use of new (highly attenuating) agents shows promise. Optical imaging methods 
are a close second in sensitivity to the nuclear techniques but scatter and limited transmission of 
light have limited optical methods to 2D images to date. MRI is more sensitive than CT but less 
than optical and nuclear methods.  



PET imaging has the lowest spatial resolution of the methods at ~ 1.5x1.5x1.5 mm (3.4 
mm3). The resolution for SPECT is somewhat better at 1x1x1 mm (1 mm3). MicroCT has the 
very best resolution of any of the methods at 0.1x0.1x0.1 mm (1 x 10-3mm3). Optical methods 
have excellent spatial resolution in plane. But scatter and penetration have made volumetric 
imaging difficult. MRI can rival microCT in resolution for fixed specimens, but limited 
sensitivity requires longer acqusition times than CT limiting in vivo resolution to ~ 0.1x0.1x1 mm 
( 1x10-2mm3).  

While the PET cameras are not as expensive as MRI systems, the need for cyclotrons and 
specialized radiopharmacy equipment on sight imposes a significant additional expense. SPECT 
cameras are relatively inexpensive and the longer half lives of many of the probes means that they 
can be purchased from commercial sources that can take advantage of economies of scale. 
MicroCT is comparable in expense to SPECT. Optical systems are some of the least expensive. 
MRI systems are generally some of the most expensive systems.   
 
Conclusion 
 Molecular imaging is in its infancy. It is unlikely that any single method will become the 
dominant method. There is little doubt that new methods will continue to arise and existing 
methods will continue to evolve. Effective use of all of these techniques for preclinical and 
clinical application will demand an understanding of the fundamental source of image signal to 
allow informed decision about the relative strengths and weaknesses. 
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